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Abstract— We address the problem of vision-based multi-
person tracking in busy pedestrian zones using a stereo rig
mounted on a mobile platform. Specifically, we are interested
in the application of such a system for supporting path
planning algorithms in the avoidance of dynamic obstacles. The
complexity of the problem calls for an integrated solution, which
extracts as much visual information as possible and combines
it through cognitive feedback. We propose such an approach,
which jointly estimates camera position, stereo depth, object
detections, and trajectories based only on visual information.
The interplay between these components is represented in a
graphical model. For each frame, we first estimate the ground
surface together with a set of object detections. Based on
these results, we then address object interactions and estimate
trajectories. Finally, we employ the tracking results to predict
future motion for dynamic objects and fuse this information
with a static occupancy map estimated from dense stereo.
The approach is experimentally evaluated on several long
and challenging video sequences from busy inner-city locations
recorded with different mobile setups. The results show that
the proposed integration makes stable tracking and motion
prediction possible, and thereby enables path planning in
complex and highly dynamic scenes.

I. INTRODUCTION

For reliable autonomous navigation, a robot or car requires

appropriate information about both its static and dynamic en-

vironment. While remarkable successes have been achieved

in relatively clean highway traffic situations [3] and other

largely pedestrian-free scenarios such as the DARPA Ur-

ban Challenge [6], highly dynamic situations in busy city

centers still pose considerable challenges for state-of-the-art

approaches.

For successful path planning in such scenarios where

multiple independent motions and frequent partial occlusions

abound, it is vital to extract semantic information about

individual scene objects. Consider for example the scene

depicted in the top left corner of Fig. 1. When just using

depth information from stereo or LIDAR, an occupancy map

would suggest little free space for driving (bottom left).

However, as can be seen in the top right image (taken one

second later), the pedestrians free up their occupied space

soon after, which would thus allow a robotic platform to

pass through without unnecessary and possibly expensive re-

planning. The difficulty is to correctly assess such situations

in complex real-world settings, detect each individual scene

object, predict its motion, and infer a dynamic obstacle map

from the estimation results (bottom right). This task is made

challenging by the extreme degree of clutter, appearance

Fig. 1. A static occupancy map (bottom left) can erroneously suggest no
free space for navigation, even though space is actually freed up a second
later (top right). By using the semantic information from an appearance-
based multi-person tracker, we can cast predictions about each tracked
person’s future motion. The resulting dynamic obstacle map (bottom right)
correctly shows sufficient free space, as the persons walk on along their
paths.

variability, abrupt motion changes, and the large number of

independent actors in such scenarios.

In this paper, we propose a purely vision-based approach

to address this task. Our proposed system uses as input

the video streams from a synchronized, forward-looking

camera pair. To analyze this data, the system combines visual

object detection and tracking capabilities with continuous

self-localization by visual odometry and with 3D mapping

based on stereo depth. Its results can be used directly as addi-

tional input for existing path planning algorithms to support

dynamic obstacles. Key steps of our approach are the use of a

state-of-the-art object recognition approach for identifying an

obstacle’s category, as well as the reliance on a robust multi-

hypothesis tracking framework employing model selection to

handle the complex data association problems that arise in

crowded scenes. This allows our system to apply category-

specific motion models for robust tracking and prediction.

In order to cope with the challenges of real-world op-

eration, we additionally introduce numerous couplings and

feedback paths between the different components of our

system. Thus, we jointly estimate the ground surface and

supporting object detections and let both steps benefit from



each other. The resulting detections are transferred into world

coordinates with the help of visual odometry and are grouped

into candidate trajectories by the tracker. Successful tracks

are then again fed back to stabilize visual odometry and depth

computation through their motion predictions. Finally, the

results are combined in a dynamic occupancy map such as

the one shown in Fig. 1(bottom right), which allows free

space computation for a later navigation module.

The main contribution of this paper is to show that vision

based sensing has progressed sufficiently for such a system

to become realizable. Specifically, we focus on tracking-by-

detection of pedestrians in busy inner-city scenes, as this is

an especially difficult but very important application area of

future robotic and automotive systems. Our focus on vision

alone does not preclude the use of other sensors such as

LIDAR or GPS/INS—in any practical robotic system those

sensors have their well-deserved place, and their integration

can be expected to further improve performance. However,

the richness of visual input makes it possible to infer very

detailed semantic information about the target scene, and the

relatively low sensor weight and cost make vision attractive

for many applications.

The paper is structured as follows: the upcoming section

reviews previous work. Section III then gives an overview

of the the different components of our vision system with a

focus on pedestrian tracking, before Section IV discusses its

application to the generation of dynamic occupancy maps.

Implementation details are given in Section V. Finally, we

present experimental results on challenging urban scenarios

in Section VI, before the paper is concluded in Section VII.

II. RELATED WORK

Obstacle avoidance is one of the central capabilities of any

autonomous mobile system. Many systems are building up

occupancy maps [7] for this purpose. An exhaustive review

can be found in [28]. While such techniques are geared

towards static obstacles, a main challenge is to accurately

detect moving objects in the scene. Such objects can be ex-

tracted independent of their category by modeling the shape

of the road surface and treating everything that does not fit

that model as an object (e.g. in [19], [26], [33]). However,

such simple approaches break down in crowded situations

where not enough of the ground may be visible. More

accurate detections can be obtained by applying category-

specific models, either directly on the camera images [5],

[16], [25], [31], on the 3D depth information [1] or both in

combination [9], [12], [27].

Tracking detected objects over time presents additional

challenges due to the complexity of data association in

crowded scenes. Targets are typically followed using classic

tracking approaches such as Extended Kalman Filters (EKF),

where data assignment is optimized using Multi-Hypothesis

Tracking (MHT) [4], [22] or Joint Probabilistic Data Asso-

ciation Filters (JPDAF) [11]. Several robust approaches have

been proposed based on those components either operating

on depth measurements [23], [24], [29] or as tracking-by-

detection approaches from purely visual input [13], [17],

Fig. 2. Mobile recording platforms used in our experiments. Note that in
this paper we only employ image information from a stero camera pair and
do not make use of other sensors such as GPS or LIDAR.

[31], [32]. The approach employed in this paper is based on

our previous work [17]. It works online and simultaneously

optimizes detection and trajectory estimation for multiple

interacting objects and over long time windows, by operating

in a hypothesis selection framework.

III. SYSTEM

Our vision system is designed for a mobile platform

equipped with a pair of forward-looking cameras. Alto-

gether, we report experimental results for three different

such platforms, shown in Fig. 2. In this paper, we only use

visual appearance and stereo depth, and integrate different

components for ground plane and ego-motion estimation,

object detection, tracking, and occupied area prediction.

Fig. 3(a) gives an overview of the proposed vision system.

For each frame, the blocks are executed as follows. First, a

depth map is calculated and the new frame’s camera pose

is predicted. Then objects are detected together with the

supporting ground surface, taking advantage of appearance,

depth, and previous trajectories. The output of this stage,

along with predictions from the tracker, helps stabilize visual

odometry, which updates the pose estimate for the platform

and the detections, before running the tracker on these

updated detections. As a final step, we use the estimated tra-

jectories in order to predict the future locations for dynamic

objects and fuse this information with a static occupancy

map. The whole system is held entirely causal, i.e. at any

point in time it only uses information from the past and

present.

For the basic tracking-by-detection components, we rely

on the framework described in [8]. The main contribution of

this paper is to extend this framework to the prediction of

future spatial occupancy for both static and dynamic objects.

The following subsections describe the main system compo-

nents and give details about their robust implementation.

A. Coupled Object Detection and Ground Plane Estimation

Instead of directly using the output of an object detector

for the tracking stage, we introduce scene knowledge to

reduce false positives. For this, we assume a simple scene

model where all objects of interest reside on a common

ground plane. As a wrong estimate of this ground plane

has far-reaching consequences for all later stages, we try

to avoid making hard decisions here and instead model the

coupling between object detections and the scene geometry
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Fig. 3. (a) Flow diagram for our vision system. (b) Graphical model for
tracking-by-detection with additional depth information (see text for details).

probabilistically using a Bayesian network (see Fig. 3(b)).

This network is constructed for each frame and models the

dependencies between object hypotheses oi, object depth di,

and the ground plane π using evidence from the image I, the

depth map D, a stereo self-occlusion map O, and the ground

plane evidence πD in the depth map. Following standard

graphical model notation, the plate indicates repetition of

the contained parts for the number of objects n.

In this model, an object’s probability depends both on its

geometric world position and size (expressed by P (oi|π)),
on its correspondence with the depth map P (oi|di), and

on P (I|oi), the object likelihood estimated by the object

detector. The likelihood P (πD|π) of each candidate ground

plane is modeled by a robust estimator taking into account

the uncertainty of the inlier depth points. The prior P (π), as

well as the conditional probability tables, are learned from a

training set.

In addition, we introduce temporal dependencies, indicated

by the dashed arrows in Fig. 3(b). For the ground plane, we

propagate the state from the previous frame as a temporal

prior P (π|πt−1) = (1−α)P (π)+αP (πt−1) that stabilizes

the per-frame information from the depth map P (πD|π).
For the detections, we add a spatial prior for object locations

that are supported by tracked candidate trajectories Ht0:t−1.

As shown in Fig. 3(b), this dependency is not a first-

order Markov chain, but reaches many frames into the past,

as a consequence of the tracking framework explained in

Section III-B.

The advantage of this Bayesian network formulation is

that it can operate in both directions. Given a largely empty

scene where depth estimates are certain, the ground plane

can significantly constrain object detection. In more crowded

situations where less of the ground is visible, on the other

hand, the object detector provides sufficient evidence to assist

ground plane estimation.

B. Tracking, Prediction

After passing the Bayesian network, object detections

are placed into a common world coordinate system using

camera positions estimated from visual odometry. The ac-

tual tracking system follows a multi-hypotheses approach,

similar to the one described in [17]. We do not rely on

background modeling, but instead accumulate the detections

of the current and past frames in a space-time volume. This

volume is analyzed by growing many trajectory hypotheses

using independent bi-directional Extended Kalman filters

(EKFs) with a holonomic constant-velocity model. While

the inclusion of further motion models, as e.g. done in [27],

would be possible, it proved to be unnecessary in our case.

By starting EKFs from detections at different time steps,

an overcomplete set of trajectories is obtained, which is

then pruned to a minimal consistent explanation using model

selection. This step simultaneously resolves conflicts from

overlapping trajectory hypotheses by letting trajectories com-

pete for detections and space-time volume. In a nutshell, the

pruning step employs quadratic pseudo-boolean optimization

to pick the set of trajectories with maximal joint probability,

given the observed evidence over the past frames. This

probability

• increases as the trajectories explain more detections and

as they better fit the detections’ 3D location and 2D

appearance through the individual contribution of each

detection;

• decreases when trajectories are (partially) based on

the same object detections through pairwise corrections

to the trajectories’ joint likelihoods (these express the

constraints that each pedestrian can only follow one

trajectory and that two pedestrians cannot be at the same

location at the same time);

• decreases with the number of required trajectories

through a prior favoring explanations with fewer tra-

jectories – balancing the complexity of the explanation

against its goodness-of-fit in order to avoid over-fitting

(“Occam’s razor”).

For the mathematical details, we refer to [17]. The most

important features of this method are automatic track initial-

ization (usually, after about 5 detections) and the ability to

recover from temporary track loss and occlusion.

The selected trajectories H are then used to provide a

spatial prior for object detection in the next frame. This

prediction has to take place in the world coordinate system,

so tracking critically depends on an accurate and smooth

egomotion estimate.

C. Visual Odometry

To allow reasoning about object trajectories in the world

coordinate system, the camera position for each frame is

estimated using visual odometry. The employed approach

builds upon previous work by [8], [20]. In short, each

incoming image is divided into a grid of 10 × 10 bins,

and an approximately uniform number of points is detected



Fig. 4. Visual odometry and occupancy maps are only based on image
parts not explained by tracked objects, i.e. the parts we believe to be static.
Left: original image with detected features. Right: image when features on
moving objects (green) are ignored.

in each bin using a Harris corner detector with locally

adaptive thresholds. The binning encourages a feature dis-

tribution suitable for stable localization. To reduce outliers

in RANSAC, we mask out corners that coincide with predicted

object locations from the tracker output and are hence not

deemed suitable for localization, as shown in Fig. 4.

In the initial frame, stereo matching and triangulation

provide a first estimate of the 3D structure. In subsequent

frames, we use 3D-2D matching to get correspondences,

followed by camera resection (3-point pose) with RANSAC.

Old frames (t′ < t−15) are discarded, along with points that

are only supported by those removed frames. To guarantee

robust performance, we introduce an explicit failure detection

mechanism based on the covariance of the estimated camera

position, as described in [8]. In case of failure, a Kalman

filter estimate is used instead of the measurement, and the

visual odometry is restarted from scratch. This allows us to

keep the object tracker running without resetting it. While

such a procedure may introduce a small drift, a locally

smooth trajectory is more important for our application. In

fact, driftless global localization would require additional

input from other sensors such as a GPS.

IV. OCCUPANCY MAP AND FREE SPACE PREDICTION

For actual path planning, the construction of a reliable

occupancy map is of utmost importance. We split this in

two parts according to the static scene and the dynamically

moving objects.

Static Obstacles. For static obstacles, we construct a

stochastic occupancy map based on the algorithm from [2].

In short, incoming depth maps are projected onto a polar

grid on the ground and are fused with the integrated and

transformed map from the previous frames. Based on this,

free space for driving can be computed using dynamic

programming. While [2] integrate entire depth maps (in-

cluding any dynamic objects) for the construction of the

occupancy map, we opt to filter out these dynamic parts. As

in the connection with visual odometry, we use the tracker

prediction as well as the current frame’s detections to mask

out any non-static parts. The reasons for this are twofold:

first, integrating non-static objects can result in a smeared

occupancy map. Second, we are not only interested in the

current position of the dynamic parts, but also in their future

locations. For this, we can use accurate and category-specific

motion models inferred from the tracker.

Dynamic Obstacles. As each object selected by the tracker

is modeled by an independent EKF, we can predict its

future position and obtain the corresponding uncertainty C.

Choosing a bound on the positional uncertainty then yields an

ellipse where the object will reside with a given probability.

In our experiments, a value of 99% resulted in a good

compromise between safety from collision and the need to

leave a navigable path for the robot to follow. For the actual

occupancy map, we also have to take into consideration the

object’s dimensions and, in case of an anisotropic “footprint”,

the bounds for its rotation. We assume pedestrians to have

a circular footprint, so the final occupancy cone can be

constructed by adding the respective radius to the uncertainty

ellipse. In our visualization, we show the entire occupancy

cone for the next second, i.e. the volume the pedestrian is

likely to occupy within that time.

Based on this predicted occupancy map, free space for

driving can be computed with the same algorithm as in [2],

but using an appropriate prediction horizon. Note that in case

a person was not tracked successfully, it will still occur in

the static occupancy map, as a sort of graceful degradation

of the system.

V. DETAILED IMPLEMENTATION

The system’s parameters were trained on a sequence with

490 frames, containing 1’578 annotated pedestrian bounding

boxes. In all experiments, we used data recorded at a

resolution of 640×480 pixels (bayered) at 13–14 fps, with a

camera baseline of 0.4 and 0.6 meters for the child stroller

and car setups, respectively.

Ground Plane. For training, we infer the ground plane

directly from D using Least-Median-of-Squares (LMedS),

with bad estimates discarded manually. Related but less

general methods include e.g. the v-disparity analysis [15].

For tractability, the ground plane parameters (θ, φ, π4) are

discretized into a 6×6×20 grid, with bounds inferred from

the training sequences. The training sequences also serve to

construct the prior distribution P (π).

Object Hypotheses. Our system is independent of a spe-

cific detector choice. In the experiments presented here, we

use a publicly available detector based on a Histogram-of-

Oriented-Gradients representation [5]. The detector is run

with a low confidence threshold to retain the necessary

flexibility—in the context of the additional evidence we

are using, final decisions based only on appearance would

be premature. The range of detected scales corresponds

to pedestrian heights of 60–400 pixels. The object size

distribution is modeled as a Gaussian N (1.7, 0.0852) [m],

as in [14]. The depth distribution is assumed uniform in the

system’s operating range of 0.5–30 [m], respectively 60 [m]

for the car setup.

Depth Cues. The depth map D for each frame is obtained

with a publicly available, belief-propagation-based disparity

estimation software [10]. All results reported in this paper



are based on this algorithm. In the meantime, we have also

experimented with a fast GPU-based depth estimator, which

seems to achieve similar system-level accuracy. However, we

still have to verify those results in practice. For verifying

detections by depth measurements in the Bayesian network,

we consider the agreement of the measured mean depth

inside the detection bounding box with the ground-plane

distance to the bounding box foot-point. As the detector’s

bounding box placement is not always accurate, we allow

the Bayesian network to “wiggle around” the bounding

boxes slightly in order to improve goodness of fit. The final

classifier for an object’s presence is based on the number of

inlier depth points and is learned from training data using

logistic regression.

Belief Propagation. The network of Fig. 3 is constructed

for each frame, with all variables modeled as discrete entities

and their conditional probability tables defined as described

above. Inference is conducted using Pearl’s Belief Propaga-

tion [21]. For efficiency reasons, the set of possible ground

planes is pruned to the 20% most promising ones (according

to prior and depth information).

VI. RESULTS

In order to evaluate our vision system, we applied it to

three test sequences, showing strolls and drives through busy

pedestrian zones. The sequences were acquired with the

platforms seen in Fig. 2.1 The first test sequence (“Seq. #1”),

recorded with platform (a), shows a walk over a crowded

square, extending over 230 frames. The second sequence

(“Seq. #2”), recorded with platform (b) at considerably worse

image contrast, contains 5’193 pedestrian annotations in 999

frames. The third test sequence (“Seq. #3”) consists of 800

frames and was recorded from a car passing through a

crowded city center, where it had to stop a few times to

let people pass. We annotated pedestrians in every fourth

frame, resulting in 960 annotations for this sequence.

For a quantitative evaluation, we measure bounding box

overlap in each frame and plot recall over false positives

per image for three stages of our system. The results of

this experiment are shown in Fig. 5(left, middle). The plot

compares the raw detector output, the intermediate output

of the Bayesian network, and the final tracking output. As

can be seen, discarding detections that are not in accordance

with the scene by the Bayesian network greatly reduces false

positives with hardly any impact on recall. The tracking stage

additionally improves the results and in most cases achieves a

higher performance than the raw detector. It should be noted,

though, that a single-frame comparison is not entirely fair

here, since the tracker requires some detections to initialize

(losing recall) and reports tracking results through occlusions

(losing precision if the occluded persons are not annotated).

However, the tracking stage provides the necessary temporal

information that makes the entire motion prediction system at

all possible. The blue curves in Fig. 5 show the performance

1Data and videos are available on http://www.vision.ee.ethz.

ch/˜aess/icra2009/.

on all annotated pedestrians. When only considering the

immediate range up to 15m distance (which is suitable for

a speed of 30 km/h in inner-city scenarios), performance is

considerably better, as indicated by the red curves.

To assess the suitability of our system for path planning,

we investigate the precision of the motion prediction for

increasing time horizons. This precision is especially inter-

esting, since it allows to quantify the possible advantage

over system modeling only static obstacles. Specifically, we

compare the bounding boxes obtained from the tracker’s

prediction with the actual annotations in the frame and count

the fraction of false positives (1 − prec). The results can

be seen in Fig. 5(right). As expected, precision drops with

increasing lookahead time, but stays within acceptable limits

for a prediction horizon ≤ 1s (12 frames). Note that this plot

should only be taken qualitatively: a precision of 0.9 does

not imply an erroneous replanning every 10th frame, as many

of the predicted locations do not affect the planned path.

Rather, this experiment shows that for reasonable prediction

horizons, the precision does not drop considerably.

Example tracking results for Seq. #1 are shown in Fig. 6.

The operating point for generating those results was the

same as the one used in Fig. 5(right). Recorded on a busy

city square, many people interact in this scene, moving in

all directions, stopping abruptly (e.g. the first orange box),

and frequently occluding each other (see e.g. the second

orange box). The bounding boxes are color coded to show

the tracked identities (due to the limited palette, some color

labels repeat). Below each image, we show the inferred

dynamic obstacle map in an overhead view. Static obstacles

are marked in black; each tracked pedestrian is entered with

its current position and the predicted occupancy cone for the

next second (for standing pedestrians, this cone reduces to

a circle). As can be seen, our system is able to track most

of the visible pedestrians correctly and to accurately predict

their future motion.

Fig. 7 shows more results for Seq. #2. Note that both

adults and children are identified and tracked correctly even

though they differ considerably in their appearance. In the

bottom row of the figure, a man in pink walks diagonally

towards the camera. Without motion prediction, a following

navigation module might issue an unnecessary stop here.

However, our system correctly determines that he presents

no danger of collision and resolves this situation. Also note

how the standing woman in the white coat gets integrated

into the static occupancy map as soon as she is too large

to be detected. This is a safe fallback in the design of our

system—when no detections are available, its results simply

revert to those of a depth-integration based occupancy map.

Finally, Fig. 8 demonstrates the vision system in a car

application. Compared to the previous sequences, the view-

point is quite different, and faster scene changes result

in fewer data points for creating trajectories. Still, stable

tracking performance can be obtained also for quite distant

pedestrians.

System Performance Apart from the object detectors, the
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Fig. 5. Left, middle: Performance plots of our system on two test sequences. We plot the overall recognition performance, as well as the obtained
performance within a range of 15m, the range that we consider important for autonomous driving at low speeds (30 km/h). Right: Precision of the tracker
prediction for increasing prediction horizon. Data was recorded at 12–14 fps.

Fig. 6. Example tracking results for Seq. #1. For each image, we show the actual tracking results as well as an overhead view of the dynamic
occupancy map.

entire system is implemented in an integrated fashion in

C/C++, with several procedures taking advantage of GPU

processing. For the complex parts of Seq. #3 (15 simultane-

ous objects), we can achieve processing times of around 400

ms per frame on an Intel Core2 CPU 6700, 2.66GHz, nVidia

GeForce 8800 (see Tab. I). While the detector stage is the

current bottleneck (the detector was run offline and needed

about 30 seconds per image), we want to point out that for

the HOG detector, real-time GPU implementations exist [30],

which could be substituted to remove this restriction.

Component GPU CPU Time

Detector × 2× 30 s

Depth map (old) × 2× 20 s

Depth map (new) × 2× 20 ms

Bayesian network × 150 ms

Visual odometry × × 40 ms

Tracker × 150 ms

TABLE I

PROCESSING TIMES OF THE VARIOUS COMPONENTS IN OUR SYSTEM.

VII. CONCLUSION

In this paper, we have presented a mobile vision system for

the creation of dynamic obstacle maps for automotive or mo-



Fig. 7. Example tracking results for Seq. #2. Note the long trajectories and the tracker’s ability to handle temporary occlusions in complex
scenarios.

Fig. 8. Example tracking results for the third test sequence, recorded from a car.



bile robotics platforms. Such maps should provide valuable

input for actual path planning algorithms [18]. Our approach

relies on a robust tracking system that closely integrates

different modules (appearance-based object detection, depth

estimation, tracking, and visual odometry). To resolve the

complex interactions that occur between pedestrians in urban

scenarios, a multi-hypothesis tracking approach is employed.

The inferred predictions can then be used to extend a static

occupancy map generation system to a dynamic one, which

then allows for more detailed path planning. The resulting

system can handle very challenging scenes and delivers ac-

curate predictions for many simultaneously tracked objects.

In future work, we plan to optimize the individual system

components further with respect to run-time and perfor-

mance. As discussed before, system operation at 2-3 fps

is already reachable now, but additional improvements are

necessary for true real-time performance. In addition, we

plan to improve the trajectory analysis by including more

elaborate motion models and to combine it with other sensing

modalities such as GPS and LIDAR.
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